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Abstract

An instantaneous and objective flow regime identification method for the two-phase flow is represented in the paper. The previous
methods have been evolved to be an objective by replacing the heuristic determination using the sensor signals in terms of the statistical
indexes. However, the flow pattern in the rapid transient or the inherently unstable flow such as the flow in the microgravity cannot be
identified because of the observation time for the statistical meaning. The design of the neural network fed by the preprocessed imped-
ance signals of the cross-sectional void fraction is proposed here to satisfy the requirement of both objective and an instantaneous iden-
tification. For the preprocessing, the both feed forward neural network and the self-organized neural network as an objective reasoning
engine were tested using the experimental data for both upward and downward two-phase flow in the pipes with the inner diameter of
25.4 mm and 50.8 mm. It was found that the proposed flow regime identifier could successfully identify the flow regime using the short
term observation data within 1 s. Furthermore, the obtained flow regimes were in a good agreement with the Mishima–Ishii criteria for
the upward two-phase flow. However, for the downward flow, it was found that the current flow regimes are in reasonable agreement
with the Usui criteria for the slug flow region, only. Other flow regimes have strong dependency on the pipe diameter and some phenom-
ena related to the kinematic wave propagation which was not considered reasonably in the previous criteria. Therefore, theoretical stud-
ies to build up the transition criteria for the co-current downward two-phase flow are recommended.
� 2008 Published by Elsevier Ltd.

Keywords: Two-phase flow; Flow regime; Objective; Instantaneous; Neural network; Probability distribution function
1. Introduction

The flow pattern of the two-phase flow varies according
to the mass flow rate of each phase. Most of interactions
among phases and solid boundary are strongly dependent
upon the flow pattern. For the design and an analysis of
the system in two-phase flow, it is essential to gear up the
knowledge of the flow pattern. In the nuclear industry,
the two-fluid formulation [1] has widely been used as the
best estimate method in the safety analysis. However, the
two-fluid model is furnished by many interfacial transfer
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terms which are highly sensitive to the flow pattern. In each
step of calculation, the computer codes of the two-fluid
model evaluate the flow regime with the calculated param-
eters and determine the transfer rates of parameters for the
next time step. The code may have uncertainties and spuri-
ous transient due to the flow regime map used. Therefore,
the study of the flow regime identification and transport
equation of interfacial area concentration has been studied
intensively. With the clue of the recent progress in the
transport formulation of the interfacial area concentration
to go upon removing the flow regime map in the two-fluid
code has been investigated intensively [2].

However, the flow regime map in the two-fluid code
needs studies to make it more objective and applicable to
the rapid transient. As for the objectiveness, the progress
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Nomenclature

di = kx �Wik2 Euclidean distance
Jg superficial gas velocity
Jf superficial liquid velocity
Lpattern characteristic length of two-phase flow
Oh the output value of the hth hidden node
upattern characteristic velocity of the faster phase
Wh connection weights between nodes of hidden

and output layer
Wij ijth weight

W T
i ¼ ðW i1;W i2; . . . ;W iN ÞT ith weight vector

Wnh connection weights between nodes of hidden
and input layer

Wo,Woh threshold or bias

x input vector
y output vector
ŷ reference output vector

Greek symbols

di delta function (unity for the winning neuron t)
but is zero otherwise

g (g > 0) learning rate
h adjusting parameter
r(x) sigmoid function rðxÞ ¼ 1

1þe�x=h

spatt pattern characteristic time
ssystem system transient time
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has been made to drift out the visual observation [3–6] to
the use of the sensor signals [7], and the heuristic determi-
nation of the flow regime based on the probability density
function (PDEF)1 has been widely used [8]. To make the
flow regime identification more objective, recent progress
in the cognition science has been employed. Mi et al. [9]
identified flow regimes using neural network with the char-
acteristics of the PDEF such as the mean, variance, and
skewness. However, it took longer than 60 s for the data
sampling to satisfy the statistical requirement. Considering
the recent studies on the two-phase flow in the microgravity
in line with the program for the space propulsion using
nuclear power, and the safety analysis of some rapid tran-
sients in the hypothetic incident of the nuclear power plant,
it is rather longer time span for the flow pattern identifica-
tion. Therefore, the present study was made to develop a
method to identify the flow regime in an instantaneous
manner with the short period of observation within one
or one second and in an objective manner using the neural
network. Many issues that rose in the present method will
be discussed here such as the preprocessing of the input
data, the optimization of the neural network structure,
the supervising and self-organization, and the flow regime
identification. It may be expected that the present method
could be a useful tool for evaluation of the model of the
interfacial area concentration for the short time variation
as well.

2. Method of instantaneous and objective flow regime

identification

The objective and instantaneous flow regime identifica-
tion are simply made by inputting the signals of short period
of observation which is recognized for the observer as the
instantaneous comparing to the characteristic time of the
phenomena to the neural network to avoid heuristic deter-
1 It is normally abbreviated as PdF but in the present paper we use
PDEF to distinguish the probability distribution function as PDSF.
mination. Therefore, the issues to be discussed are the
meaning of the instantaneous observation, the preprocess-
ing of input signals, the sort of neural network, the optimi-
zation and sensitivity of the structure of the neural network.
2.1. An instantaneous observation and the preprocessing of

the input signals

For the instantaneous flow regime identification, the
observation time needs to be defined. Fig. 1 illustrates the
typical air–water flow regimes observed in vertical
25.4 mm diameter pipe. The flow regimes in the first, sec-
ond, third, fourth, and fifth figures from the left are bubbly,
cap bubbly, slug, churn turbulent, and annular flows,
respectively. As the characteristic length scale, the size of
specific bubbles such as discrete bubble, cap bubble, and
Taylor bubble can be selected in the bubbly, cap bubbly,
and slug flow pattern.

The relatively much shorter observation time than the
time to produce the probability density function (PDEF)
satisfying the statistical requirement, may be the acceptable
meaning for the instantaneous identification. But the time
should be longer enough to represent the specific character-
istics of the flow regime. For instance, if we observe the
slug flow as shown in Fig. 2, the shorter time than the char-
acteristic time would lead for the flow regime identifier to
tell the other flow pattern such as annular flow or the bub-
bly flow. The characteristic time for the slug flow should be
longer than the observation time at least one large Taylor
bubble and the slug with discrete bubbles. Therefore, the
time can be determined by dividing the total length of the
characteristic pattern by the fast representative velocity,
in this case, the Taylor bubble velocity. Once we knew
the characteristic length of the two-phase flow, Lpattern,
and the characteristic velocity of the faster phase, the min-
imum time for the flow regime identifier would be

spatt ¼
Lpattern

upattern

: ð1Þ



Fig. 1. Typical air–water flow images observed in a vertical upward two-phase flow in a pipe of 25.4 mm diameter.
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Fig. 2. The effect of the observation time sobs on the flow regime
identification: the observation time should be longer than the flow pattern
characteristic time spatt.

3444 J.Y. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 3442–3459
However, spatt is defined in the sense of the quasi-steady
state. The two-phase flow under the rapid transient may
be shorter than spatt. For instance, the downward two-
phase flow in a relatively large pipe has the flow regime
of unstable in which small variation of the gas flow rate in-
duces sudden flow pattern change from annular flow to the
bubbly flow. The front shock wave transport along the pipe
and two different flow patterns coexist with the boundary
of the shock wave. Except such a rapid transient, the sys-
tem dynamics take longer response time than the above
flow pattern specific time. It is reasonable that the time
for the instantaneous flow regime identifier should be long-
er than the minimum of the pattern characteristic time, spatt

and system transient time, ssystem:

s P minðspatt; ssystemÞ: ð2Þ

In the present study, only the steady state data were used
in the flow regime study. The flow regime in the system
transient is out of the scope. The minimum characteristic
time was less than 1 s in the present study, which is short
enough to be called an instantaneous when we compare it
with the previous observation time of 60 s for the PDEF
identification.

The second important concept to be employed in the
present study is the preprocessing of the data. Since the
present method is designed to directly input the data into
the neural network, so to make the problem feasible in
the engineering sense, we need to consider the limitation
and the way not to make the neural network be confused
by the small variation of signals. For these reasons, two
steps of preprocessing are taken: the data down sampling
and data sorting. Down sampling was made to reduce
the number of input nodes which is needed to make better
convergence of the neural network because of the few out-
put nodes representing the specific flow regimes. Sorting
the data according to the magnitude of the signals will
enhance the learning of the neural network to make the
clear flow pattern identification. Without sorting the data,
the sampling data has random initial and final values
according to the initial and final time of the sampling time.
The different boundary condition in the time sequential
data could be a cause of the confusion to the neural
network.
2.1.1. Down sampling

Even though we perform short period of measurement,
fast sampling produces large number of data. To input
the large number of data, however, the neural network
needs the large number of input nodes, which will be the
cause of heavy computational burden and poor conver-
gence characteristics. Therefore, it is necessary to reduce
the number of data without losing the physical characteris-
tics. This data reduction will improve the structure of the
neural network by reducing the number of input nodes,
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which is useful in fast convergence as well as low computa-
tional burden in iteration. Many methods have been devel-
oped for data reduction in the signal processing field,
however, in the present study, we simply employ classical
filter based on the Nyquist sampling theorem. If we furnish
more advanced method than the Nyquist sampling theo-
rem, it will be an improvement of the present method.

The Nyquist sampling theorem proclaimed when the
data are selected from the raw data with the two times fas-
ter sampling frequency than the maximum frequency of the
original analog signals, the original signals could be recov-
ered without distortion. The maximum frequency of the
raw data is determined using the fast Fourier transforma-
tion. For instant, the maximum frequency for the slug flow
and churn flow in this study was around 50 Hz in the pres-
ent experimental data. Thus, Nyquist criteria ask the sam-
pling frequency of 100 Hz. It was found that after data
reduction, the characteristics of the slug flow such as the
existence of bubbles and large slug peak were well pre-
served as expected.

2.1.2. Data sort for the probability distribution function

As aforementioned, the characteristics of signals from
sensor, rather than the visual observation, make the flow
regime identification more objective. However, the time
for the observation should be longer than the time to
ensure the statistical reliability. If we have the time scale
for the statistical meaning, sstat, we need to observe the flow
longer than this time period. There is no guarantee that this
time is shorter than the transient time, sphe.

At this moment, it is noteworthy that the neural net-
works have merits of objectivity as much important as
the robustness in decision. In other word, the neural net-
work can make decision with imperfect data in the stan-
dard of statistical rigor. If the neural network is adopted
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Fig. 3. Construction of PDEF and PDSF from the time sequential impedance s
impedance signals; (c) probability density function of impedance signals; (d) th
for the flow pattern identification, there is no reason not
to use this character of relaxed requirement on input data,
i.e. the data observed in a shorter time than the statistical
time scale. Therefore, in this work, we tried to directly
input the signals to the neural network rather than the
selected parameters of probability density function [10].
Total information including noise recognized by the neural
network will produce the proper classification even under
the instantaneous time scale, Eq. (1), and shorter than
the statistical time scale.

If the signals are directly input to the neural network, its
initial and final data are given in an arbitrary manner
depending on the observation starting time. This arbitrari-
ness could be a source of confusion to the neural network.
This needs the preprocessing of the raw signals. If we
employ the probability density function (PdF, or PDEF)
and input it directly to the neural network, then at least
the floating problem of initial and final values can be
solved. However, there are possible spurious peaks due to
imperfect data and noise when we use the small number
of data. In the present work, we used the probability distri-
bution function (PDSF) rather than PDEF, which is pre-
pared by sorting the data according to their magnitude.
Fig. 3 illustrates the difference of the PDEF and PDSF
and the method to produce the PDSF. As an example, a
slug flow (Fig. 3a) is monitored by the impedance meter.
The time sequential signals are depicted in Fig. 3b. The
probability density function based on the magnitude of
the impedance is obtained by measure the probability to
find the signal in a certain magnitude of impedance as
shown in Fig. 3c. The probability density function of the
void fraction signals has been widely used due to it has dif-
ferent shape for different flow regime. Furthermore, the ini-
tial value and final value are not changed by the
measurement situation. However, Fig. 3d is constructed
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just by sorting data with its magnitude so that index in the
figure means just the sequence of the sorted data. It is cor-
respondent with the probability distribution function to
find the certain magnitude of signals. This simple method
of construction provides us three benefits:

– Insensitive to the statistical requirement compare to
PdF, so we can reduce the observation time.

– Due to its monotonic variation as shown in Figs. 4c–8c,
down sampling of the data can be easily made to reduce
the number of input nodes of neural network for the fast
estimation.

– The shape of the PDSF is less sensitive than the original
time sequential data so that neural network is hard to be
confused.
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Fig. 4. The signal characteristics for the bubbly flow. (a) The void-impedance s
probability distribution function for 1 s data observation.
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Fig. 5. The signal characteristics for the cap bubbly flow. (a) The void-imped
(c) the probability distribution function for 1 s data observation.
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Fig. 6. The signal characteristics for the slug flow. (a) The void-impedance sig
probability distribution function for 1 s data observation.
The comparisons among the impedance signals, the
probability distribution function and the probability den-
sity function for the typical bubbly, cap bubbly, slug,
churn, and annular flows are depicted in Figs. 4–8. As
expected, both functions represent the character of the spe-
cific flow regime. The one sharp peak at high impedance
value are shown in PDEF (Fig. 4b) for the bubbly flow
which makes high and smooth plateau in PDSF as shown
in Fig. 4c in which index means sorted time sequence
according to the magnitude of the impedance. The cap
bubbly flow has two peaks in PDEF as shown in Fig. 5.
However, the PDSF shows a jump in the middle. The slug
flow also has two peaks in PDEF as shown in Fig. 6; the
left peak of slug flow is higher than the peak of cap bubbly
flow. Then the PDSF shows a jump in the middle, more
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Fig. 7. The signal characteristics for the churn flow. (a) The void-impedance signal; (b) the probability density function for 60 s data observation; (c) the
probability distribution function for 1 s data observation.
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sharply. Therefore, the neural network can identify the dif-
ference among the bubbly flow, cap bubbly flow and slug
flow. Fig. 7 shows the probability functions for the churn
flow. There are multi-peaks in PDEF but PDSF shows a
monotonic increase of the impedance value. Annular flow
shows the similar trends to the bubbly flow except the cor-
responding impedance value which is lower than bubbly
flow to represent the high void fraction as shown in Fig. 8.

From this discussion, it can be said that the present
probability distribution function which has not been widely
used for the flow pattern analysis is capable of being useful
for this purpose, and furthermore, it is more stable to the
imperfection of data due to the small number of data
and noise. This probability distribution function and neu-
ral network make a good compatibility to achieve the pur-
poses of the objective and instantaneous flow pattern
identification.
2.2. Objectivity and neural network

The objectivity of the flow regime identification has been
greatly increased by employing the neural network which
provides objective decision to the previous heuristic deci-
sion based on the PDEF shape. Mi et al. [9] used three
characteristics of PDEF as the input to the neural network
and reported the successful identified the flow regime map.
In the present study, we also use the neural networks but
the number of input nodes is larger than Mi et al.’s work
due to the direct input of the preprocessed data. In the
present section, brief introduction of the supervised neural
network and unsupervised neural network used here is
made. For the present specific purpose, some noteworthy
experiences in the optimization of the neural network will
be explained.
2.2.1. Supervised neural network and optimization

The supervised neural network is the feed forward
multi-layered neural network with one hidden layer. In
the general neural network, it needs at least input layer
and output layer. There are many types of neural network
according to the method to connect input and output lay-
ers. One can insert many hidden layers in between the input
layer and output layer like brain in our body which collects
input and processes them and orders organ to react based
on the decision. In case of feed forward neural network,
since the network without hidden layer is supposed to be
just a general linear model, the network with one hidden
layer is most widely used due to its relative simple structure
and it is close to projection pursuit regression in the statis-
tical analysis. The non-linearity and relaxed statistical
requirement of the data for this neural network provides
a good performance in the cognition activity.

The schematic diagram to show the structure of the
present feed forward neural network is shown in Fig. 9;
the sorted data are input to the input layer to excite the
output nodes. The nodes of the largest excitement deter-
mine the flow pattern corresponding to the node. However,
when the data is in the transition border, it often produces
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multiple excitements of the several output nodes. In this
case, the data can be counted as the unidentified or transi-
tion. This can be a different character of the supervised
method comparing to the unsupervised network in which
the neural network produce only one winner node even
at the border of competitive flow regimes.

The direct input of this data needs a large number of
input nodes, which were tried from several thousands to
several hundred, and output nodes are fixed to five. The
determination of the excitement of neurons follows the
standard method. The determination of the number of hid-
den nodes in the hidden layer is imperative to make good
convergence and proper pattern identification. In the pres-
ent study, we tried to find the number of hidden nodes
showing a good convergence.

To illustrate this, let us consider a three-layer feed for-
ward neural network with N input nodes, H hidden nodes,
and one output node as shown in Fig. 10. The output from
this neural network is determined by a logistic sigmoid
function:

y ¼ r
XH

h¼1

Oh � W h þ W o

 !
; ð3Þ

where the hyperbolic tangent sigmoid function r(x) is de-
fined with the shape adjusting parameter h:

rðxÞ ¼ 1

1þ e�x=h
: ð4Þ

Oh is the output value of the hth hidden node which is
determined by the activation of the input nodes as a sig-
moid function:

Oh ¼ r
XN

n¼1

xn � W n;h þ W oh

 !
: ð5Þ
Wh are the connection weights between nodes of hidden
and output layer, and Wnh are the connection weights be-
tween nodes of hidden and input layer. Also, Wo and
Woh serves as a threshold or bias.

During cycles of training, the weights of networks are
updated in such a way that the error,

P
ðy � ŷÞ2, the differ-

ence between the desired response ŷ and the computed
response y, is minimized to required threshold.

Training is performed using the back-propagation algo-
rithm. That is the input used as activation for the input
layer and it is propagated to the output layer. The received
output is then compared to the desired output and an error
value is calculated for each node in the output layer. The
weights on edges going into the output layer are adjusted
by a small amount relative to the error value. This error
is propagated backwards through the network to correct
edge weights at all levels. Through iteration, the error
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decreases and the training of the neural network results in a
certain level of error. In the present study, we can optimize
the neural network by finding the number of hidden nodes
which give us small error and fast response. Fig. 11 illus-
trates the converged error in the back-propagation training
the neural network. It is interesting that the number of hid-
den nodes for low error and good performance considering
the calculation time was four and seven. However, the most
stable prediction was made by seven hidden nodes in our
experience as noted in Lee et al. [11].

2.2.2. Unsupervised neural network and optimization

Kohonen’s self-organized neural network (KSOM) has
been used for clustering, visualization, and abstraction
[12]. The basic concept behind the KSOM is the preserva-
tion of topology, in other word the relation among data. A
KSOM is an one active layer neural network consisting of a
multidimensional array of neurons (usually two-dimen-
sional). Each neuron in the grid is also an output neuron.
The neurons are connected only with their closed neighbors
in the array according to a prescribed topological scheme.
The KSOM is trained through unsupervised competitive
learning using a ‘winner takes it all’ policy. Due to the lim-
ited number of output nodes requested for the flow regime
map, one-dimensional Kohonen self-organized neural net-
work, one-dimensional output layer is suited. As shown in
Fig. 12, a one-dimensional KSOM has two layers with
input x = (x1,x2, . . . ,xN) and output y = (y1,y2, . . . ,yO).
For the ith output neuron, yi is determined by

y ¼
XN

j¼1

W ijxj ¼ W T
i x; ð6Þ

where Wij is the ijth weight and W T
i ¼ ðW i1;W i2; . . . ;W iN ÞT

is the ith weight vector. To train KSOM, the wining output
neuron is determined first by comparing the similarity
between the input x and the weight vector fW T

i ; i ¼
1; . . . ;Og. The wight vector of the winning output neuron
is then updated. As a measure of similarity between two
vectors, the Euclidean distance (Kohonen [12]) is com-
monly used:
di ¼ kx� W ik2
: ð7Þ

The output neuron with the minimum distance become
winner and the weight vector of the winner neuron are up-
dated as follows:

W i;new ¼ W i;old þ gðx� W i;oldÞdi; i ¼ 1; . . . ;O; ð8Þ

where g (g > 0), is the learning rate, and di is unity for the
winning neuron that has the smallest di, but is zero other-
wise. The iteration is made until the variation of the weight
vector approaches below a certain threshold.

The network structure is represented in Fig. 13. The out-
put nodes are not correspondent to the flow regimes
directly; rather they just represent the similar clusters of
the data. In other word, the present KSOM has no explicit
information on the flow regime from the result. Therefore,
after getting clusters, post works are needed to resolve the
character of the cluster, in this case, the corresponding flow
regime. These can be made by the heuristic determination
by observing the raw signals or the comparison with the
results of supervised neural network.

Therefore, the result strongly depends on the number of
clusters, i.e. the number of output nodes. This number can-
not be determined by the learning efficiency like the super-
vised neural network, because it depends on the flow
character, diameter of pipe, etc. As discussed in the results
section, the correspondence of the clusters and flow regimes
do not show the similar trends as the pipe diameter
changes.

3. Experimental facility for upward and downward two-phase

flow

3.1. Flow loop

The two-phase flow experiment was performed by using
a flow loop installed at Thermal-hydraulics and Reactor
Safety Laboratory in Purdue University. The experimental
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3450 J.Y. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 3442–3459
loop presented in this investigation is an adiabatic, a verti-
cal, air–water system. The schematic diagram of the exper-
imental loop is shown in Fig. 14. The experimental loop
consists of the two test sections, which are 2.54 cm ID
and 5.08 cm ID round acrylic tubes whose total lengths
are L/D = 150 and 75, respectively. Transparent acrylic is
employed for the entire test section so that the flow can
be observed at any location.

An air–water mixture injection unit is used at the top
and the bottom of each test section so that the loop is capa-
ble of operating both upward and downward flow experi-
ments. This is one of the most unique features of this
experimental loop.

Water flow is supplied by a 18.65 KW centrifugal pump
manufactured by Goulds Pump, which is capable of deliv-
ering up to 1514 l of liquid per minute. A variable fre-
quency driver manufactured by Toshiba is employed to
control the total liquid flow rate coarsely, and ball valves
are utilized for fine control. Air is supplied via external
compressors with a maximum pressure of 0.985 MPa.
The operating pressure in the gas line is controlled by a
pressure regulator manufactured by Bosch-Pneumatic at
0.689 MPa, and the flow rate is controlled by valves. Both
test sections share the common air and water delivery sys-
tems. After passing through the test section, the air and
water mixture is separated in the water accumulator where
the water is recirculated and the air is discharged into the
atmosphere.
3.2. Instrumentation

The liquid flow rate is measured by a commercial elec-
tromagnetic flowmeter (Honeywell, MagneW3000) and
rotameters (Dwyer Instruments, VF series). An electro-
magnetic flowmeter is employed to measure the total liquid
flow rate and rotameters are employed to measure the flow
rate of the secondary liquid injection line. The accuracy of
the electromagnetic flowmeter and the rotameter is within
±1% of full scale and ±3% of full scale, respectively. The
pressure of the gas line is controlled by a pressure regulator
(Bosch-Pneumatic) and is kept constant at 100 psi. The gas
flow rate is measured by gas rotameters (Dwyer Instru-
ments, RM series). The accuracy of the gas rotameter is
within ±4% of full scale. The local pressure is measured
by pressure gauges (McDaniel Controls) and the pressure
drop along the test section is acquired by a pressure trans-
ducer (Honeywell, S900). The accuracy of the pressure
gauge and the pressure transducer is within ±3% of span
and within ±1% of full scale, respectively.

An impedance-void meter [10] is utilized to obtain an
area-averaged impedance signal, which is applied to the
analysis of the flow regime identification. Three probe
ports are located in each test section at L/D = 13, 68 and
133 for the 2.54 cm ID loop and L/D = 7, 34, and 67 for
the 5.08 cm ID loop. The measurement was made at the
central probe port in each loop.

This impedance signal can be converted into the area-
averaged void fraction with an impedance-void fraction
correlation.

The data acquisition hardware consists of a signal con-
nection electrical circuit block, DC power supply, function
generator, acquisition board, and PC. The acquisition
board (National Instruments, AT-MIO-64E-3) has a sam-
pling rate of 500 kHz with 12-bit resolution and 64 sin-
gle-ended or 32 differential-ended channels. The signals
are sent to the board via the shielded connector block
(National Instruments, SCB-100). The computer is a Dell
Dimension XPS-T450 with Pentium III 450 MHz proces-
sor. The signal analysis software (National Instruments,
LabVIEW) allows constant monitoring of the raw signal
during data acquisition.
4. Results and discussion

Series of experimental works were performed for both
the vertically upward and vertically downward co-current
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two-phase flow to establish the instantaneous and objective
flow regime identification method. Both supervised neural
network and self-organized neural network were evaluated
to find the optimum structure and better performance in
both convergence and prediction.
4.1. Upward two-phase flow

The flow regime map for the upward co-current two-
phase flow has been intensively investigated to study the
current method with the data relevantly. Furthermore,
since there are many reliable transition criteria, the com-
parison with them is also one of interests in the study.
4.1.1. Characteristics of the impedance signals for the void

fraction

Many flow regimes have been suggested based on the
geometrical differences: the bubbly flow, slug flow, churn
turbulent flow, and annular flow. Sometimes more precise
definitions have been also proposed. For the bubbly flow,
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the discrete bubbly flow and cap bubbly flow were also dis-
tinguished based on the existence of cap bubbles. For the
slug flow, the stable slug flow and unstable slug flow were
also presented in the literature. As the gas flow rate
increases, the size of cap bubble is enlarged and turned into
the large Taylor bubble which is named as the slug flow.
Tremendously small bubbles occur at the rear part of the
Taylor bubble and they are entrapped into the wake region.
Although there are still some arguments in the definition of
the churn turbulent flow, the impedance signals for churn
turbulent flow exhibit very chaotic oscillation. The increase
of gas flow finally makes the flow in the annular flow pat-
tern in which the liquid climb over the wall with gas core
flow. Various complicated surface waves occurs and runs
over the liquid film and liquid droplet due to the break
up of the roll wave or solitary wave entrains in to the gas
core flow. Therefore, the impedance signals in the annular
flow are highly chaotic and low impedance due to the high
void fraction.
4.1.2. Supervised neural network

According to the study of Lee et al. [11], the optimized
feed forward neural network has the structure of 100 input
nodes, 7 hidden nodes, and 5 output nodes. For the input
nodes the sorted signals according to the magnitude of 1 s
sampling time are used.

The flow regime map for vertically upward flow in
25.4 mm ID pipe determined by the present optimized feed
forward neural network was depicted in Fig. 15. The super-
vised neural networks clearly identified the bubbly flow,
cap bubbly flow, slug flow, churn flow. However, the annu-
lar flow was difficult to identify due to the lack of data to
training. Referring to the study of Mi et al., the present
results clearly show that the Mishima–Ishii criteria [13]
contained both discrete bubbly flow regime and cap bubbly
flow regime. Taitel et al. [4], also classify the discrete bub-
bly flow and the spherical cap bubbly flow as bubbly flow.
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Fig. 15. The flow regime identification results of the present instantaneous
supervised neural network for the upward two-phase flow in 25.4 mm ID
pipe.
Furthermore, the present method actually activates the
output nodes with a certain level of confidence, so, there
is undetermined identification in the figures which repre-
sents that the current neural network activates two compet-
itive regimes with the almost same level of confidence. This
indetermination of the flow regime is so natural as pointed
by Mishima–Ishii, the flow regime transition is gradual that
there should be the mixed flow regimes near the criteria. It
was found that the present supervised neural network is
capable of identifying the mixed regime on the border of
transition. Also, it may be requested to set up the transition
criterion for the discrete bubbly to cap bubbly flow
regimes. For the transition between the slug flow regime
and churn turbulent flow regime, the present identification
is in a good agreement with the Mishima–Ishii based on the
fully agitated slug bubble in the low liquid flow regime.
However, in the higher liquid flow condition, the transition
departs from the Mishima–Ishii criteria. Recent arguments
on the transition mechanism for the slug-to-churn flow
may be caused from this deviation.

Generally speaking, the current flow regime identifica-
tion with 1 s observation produces the flow regime map
successfully in a good agreement with the criteria of Mishi-
ma–Ishii.

In the 50.8 mm ID pipe flow, the bubbly-to-slug transi-
tion line of Mishima–Ishii penetrates the middle part of the
cap bubbly flow as shown in Fig. 16. This means that, in
the large pipe diameter, it needs more gas flow to produce
large stable Taylor bubble. In this point of view, the cap
bubbly regime can be considered as the transition border
between the bubbly flow regime and slug flow regime.
The criterion based on the geometrical maximum packing
of bubbles criteria of Mishima–Ishii can be interpreted as
a useful one. But, the criteria need to be modified in the
response of the ration of pipe diameter to the length slug
bubble. It is partially based on the phenomenological
observation that the local distribution of the bubbles
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Fig. 16. The flow regime identification results of the present instantaneous
supervised neural network for the upward two-phase flow in 50.8 mm ID
pipe.
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Fig. 17a. The flow regime identification results of Kohonen’s self-
organized neural network with three clusters for upward flow in
25.4 mm ID pipe.
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Fig. 17b. The flow regime identification results of Kohonen’s self-
organized neural network with four clusters for upward flow in 25.4 mm
ID pipe.
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Fig. 17c. The flow regime identification results of Kohonen’s self-
organized neural network with five clusters for upward flow in 25.4 mm
ID pipe.

J.Y. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 3442–3459 3453
depends on the lift forces acting on the bubbles. The wall
peak of the void fraction will enhance the agglomeration
of the tiny bubbles, but the lift force for the sufficiently
large bubble pushes them to the center of the pipe. Once
the local void fraction of the center of pipe exceeds the
maximum bubble packing condition, they agglomerate
and produce cap bubbles. The local distribution of the bub-
ble and interfacial phenomena are highly complicated as
described in the model of the transport equation of the
interfacial area concentration of Ishii. Therefore, the pres-
ent difference between the present result and the Mishima–
Ishii may be one of strong motivation to develop the mech-
anistic model of the evolution of the interfacial area
concentration.

For the slug-to-churn transition, the present identifica-
tion is very close to the criterion of Mishima–Ishii. In the
probability density function (PDEF), the churn flow can
be classified as the one peak near the Taylor bubble, which
means the fully agitated Taylor bubble and its breaking-up
produce one large peak of PDEF with wide spectrum near
the void fraction of 0.7. Mishima–Ishii has proven that at
that point, the mean void fraction is almost equal to the
average void fraction of Taylor bubble. Although there
are still open arguments on the definition of Churn flow,
if we consider the geometrical classification for flow regime,
the present method supports the understanding of Mishi-
ma–Ishii on churn flow.

4.1.3. Unsupervised neural network

The self-organized neural network, which is not super-
vised by the designer, classifies the patterns according to
the number of clusters. The number of output nodes, there-
fore, at least exceeds the number of flow patterns which are
classified. However, sometimes the unsupervised neural
network uses the output nodes to classify the detailed dif-
ference in a specific flow pattern not to classify the large
group of flow patterns. The optimization of the unsuper-
vised neural network, therefore, means to find the optimum
number of output nodes to distinguish the proper flow pat-
terns of interest. In the present study, we change the num-
ber of output nodes form three to five to find the proper
structure.

As shown in Fig. 17a, three clusters, the bubbly-to-slug
transition is well identified by the three clusters KSOM.
However, wide range of slug flow was identified as the
churn flow. Since KSOM measures the topological Euclid-
ean distance from the center of the cluster, which is selected
in the self-training as the most representative data of a cer-
tain cluster, the fact that the wide range of slug flow was
identified as the churn by KSOM neural network means
that in the slug flow, the cluster of unstable slug flow is
topologically closer to the cluster of churn flow than that
of the slug flow.

However, the four-cluster-KSOM makes some differ-
ence as shown in Fig. 17b, four clusters. It is interesting
that this increase of cluster number just divides the bubbly
flow regime into two: discrete bubble and cap bubble. It
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Fig. 18b. The flow regime identification results of Kohonen’s self-
organized neural network with four clusters for upward flow in 50.8 mm
ID.
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Fig. 18c. The flow regime identification results of Kohonen’s self-
organized neural network with five clusters for upward flow in 50.8 mm
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can be identified by comparing with the result of the super-
vised flow regime identifier as well as the character of raw
signals. However, still large area of the slug flow regime is
occupied by the churn flow regime. Therefore, four clusters
are identified sensitively in bubbly flow regime but it is
insensitive in churn flow regime. The five clusters,
Fig. 17c: five clusters, finally, produce almost same level
of identification as the supervised method. The bubbly flow
regime of Mishima–Ishii is classified in two regimes: dis-
persed bubbly flow regime and cap bubbly flow regime.
Also, the slug flow regime is divided into two: stable slug
flow regime and unstable slug flow regime as noted by
Whale et al. In consequences, the slug-to-churn transition
is very close to Mishima–Ishii criteria.

In the case of upward flow in 50.8 mm ID pipe, the iden-
tification results are almost similar to the results of
25.4 mm ID case. As shown in Fig. 18a, three clusters,
the bubbly-to-slug transition is also well matched with
the three clusters KSOM, and in the case of the four-clus-
ter-KSOM, Fig. 18b: four clusters, the bubbly flow regime
is divided into two regimes which are discrete bubble and
cap bubble. In the five clusters, Fig. 18c: five clusters, the
bubbly flow regime of Mishima–Ishii is classified as two
regimes: dispersed bubbly flow regime and cap bubbly flow
regime. And the slug flow regime is divided into two: stable
slug flow regime and unstable slug flow regime as noted by
Whale et al.

The sensitivity of number of cluster to the flow identifi-
cation is summarized in Tables 1 and 2, respectively. In this
point of view, the careless use of output nodes could lead
the unrealistic flow regime identification. Because, the
topological Euclidean distances among flow regimes mea-
sured by the Kohonen self-organized neural network are
not proportional to the physical geometrical measure of
the flow regimes. Therefore, to identify the churn flow
and annular flow, we need to prepare more than five
clusters.
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Fig. 18a. The flow regime identification results of Kohonen’s self-
organized neural network with three clusters for upward flow in
50.8 mm ID pipe.

ID.
4.2. Downward two-phase flow

The studies on the downward co-current two-phase flow
have not been made intensively when we compare them to
the studies on the co-current upward two-phase flow. Fur-
thermore, results are highly influenced by the mixing
method of gas and liquid, thus some data and transition
criteria of flow regimes are scattered widely among
researchers. However, in many cases in the industrial facil-
ities, the co-current downward two-phase flow occurs so
that the flow regimes are studied in the present study using
the proposed method.
4.2.1. Characteristics of the impedance signals for the void

fraction
The visualization using the high speed motion analyzer

with 500 frames/s was employed to characterize the flow



Table 1
The sensitivity of number of cluster to the flow regime identification for the upward flow in the pipe of 25.4 mm ID

Three clusters Four clusters Five clusters

First Bubbly flow Bubbly flow Bubbly flow
Second Stable slug flow Cap bubbly flow Cap bubbly flow
Third Unstable/churn/annular flow Stable slug flow Stable slug flow
Fourth Unstable/churn/annular flow Unstable slug flow
Fifth Churn/annular flow

Table 2
The sensitivity of number of cluster to the flow regime identification for the upward flow in the pipe of 50.8 mm ID

Three clusters Four clusters Five clusters

First Bubbly flow Bubbly flow Bubbly flow
Second Stable slug flow Cap bubbly flow Cap bubbly flow
Third Unstable/churn flow Stable slug flow Stable slug flow
Fourth Unstable/churn flow Unstable slug flow
Fifth Churn flow
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regimes as shown in Fig. 19. Bubbly flow is basically the
same as the upward flow wherein small bubbles are dis-
persed in a continuous liquid phase. The major difference
from the upward flow is that the bubbles tend to migrate
towards the center of the tube due to the lift force in the
shear flow. However, once cap bubble occurs, the cap bub-
ble attached on the tube wall and makes some spiral
motion. Slug flow observed in downward flow is relatively
different from upward slug flow. In upward flow, the gas
slug, also known as the Taylor bubble, frequently has a
bullet shape and its nose faces towards the flow direction.
Contrarily, the gas slug in downward flow almost never
has a bullet shape; instead, it is more likely a wedge shape
and its off-centered nose faces opposite to the flow direc-
tion. Churn turbulent flow has the same degree of complex
as the upward two-phase flow. Annular flow has the wavy
falling film and annular drop flow. For the high gas flow
Fig. 19. The representative flow pattern in the vertical co-current downward tw
(the nose of cap bubble direct to the wall), (c) the slug flow, (d) churn flow, a
condition, the downward test facility showed the annular
drop flow which is very similar to the upward annular flow.
Goda et al. [14] made a comparative study of the flow
regime map constructed by the method of Mi et al. with
the existing flow regime criteria such as Barnea et al. [15]
and Usui [16]. The flow regime identification and develop-
ment of proper constitutive relations for the downward
flow may need further works due to the different action
of gravity force, which make thicker film in the annular
and churn flow regime than the upward case and different
bubble migration direction in the bubbly flow. Also, dom-
inant surface waves in the annular flow and entrainment
behavior need to be considered in the analysis.

4.2.2. Supervised neural network
Fig. 20 shows the flow regime map for vertically down-

ward flow in 25.4 mm ID pipe determined by the present
o-phase flow in a pipe of 2.54 cm ID. (a) Bubbly flow, (b) cap bubbly flow
nd (e) the annular flow.
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Fig. 20. The flow regime identification results of the present instantaneous
supervised neural network for the downward two-phase flow in 25.4 mm
ID pipe.
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Fig. 21. The flow regime identification results of the present instantaneous
supervised neural network for the downward two-phase flow in 50.8 mm
ID pipe.
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optimized feed forward neural network. It was turned out
that the present classification is far away from the criteria
of Barnea et al. due to the different injection method of
two-phase flow from the current facility as Goda et al.
[14] noted. Therefore, in the present study, we only com-
pare the present result with the Usui criteria [16]. Basically
the supervised neural network depends seriously on the ref-
erence data, so that the present results were fairly repre-
senting the flow regimes of Goda et al. which was
constructed with the three parameters of PDEF. For the
low liquid flow rate region, the sudden transition to the
annular flow from the bubbly flow, slug flow, churn flow
as increase the gas flow rate was observed. The transition
was made due to the kinematic wave which starts form
the top injection part. The kinematic wave was not trans-
ported for a while but suddenly transported down to the
whole pipe and the annular flow pattern occupies the whole
pipe. The dynamics of the kinematic wave is very sensitive
to the operation procedure such as the increasing operation
of decreasing operation of the gas flow and produce a cer-
tain types of hysteresis. Goda et al. [14] reported that the
unstable region in their flow regime map because in the
pipe two different flow regimes coexist for a while due to
the stack of the kinematic wave front.

The present result shows clearly, the dispersed bubbly
flow, cap bubbly flow, slug flow, churn flow and annular
flow regimes. For the 25.4 mm ID tube, the present data
are very close to the criteria of Usui [16]. The bubbly-to-
slug transition of Usui is well matched the transition from
cap bubbly to slug flow regime. The prediction of the slug-
to-churn transition of the present method is in a good
agreement with the slug-to-annular transition criterion of
Usui in which no discrete classification between the churn
and annular flow.

Also in the 50.8 mm ID pipe downward flow, the bub-
bly-to-slug transition line of Usui is close to the results of
the present work (Fig. 21), and the slug-to-annular transi-
tion follows Usui line except in the region of the low liquid
flow rate. This means that in the large pipe diameter, it is
difficult to produce large stable Taylor bubble and it is very
sensitive to increment of gas flow rate at low liquid veloc-
ity. In the low liquid velocity region, the annular like trans-
parent film flow were observed but the impedance signals
showed thicker film thickness and large amplitude of the
solitary wave. In the present classification we took the ref-
erence training data in the low liquid velocity region for the
annular flow, so the neural network classify the annular
and churn flow. However, as shown in 25.4 mm ID pipe
case in which the transition was almost vertical in the
plane, i.e. at the constant gas velocity and also in the
upward flow case, the transition was at the constant gas
velocity, the downward flow also may have the similar
transition criterion. In that point of view, the present
experiment in the 50.8 mm ID pipe was made in the lower
gas velocity condition to clear distinguish the annular and
churn transition. It should be noted that this is the matter
of definition. The most important factor in the flow pattern
classification is the change of dominant phenomena in the
interfacial transfer terms. If the interfacial transfer in
the annular and churn flow regimes can be estimated by
the unified correlation, then there is no reason to make
efforts to distinguish these two flow regimes.

The present results made a good agreement with the
Usui’s criteria for the bubbly-to-slug and slug-to-annular
(or churn). It is very hard to distinguish the difference
between the annular flow regime and churn flow regime
in the 50.8 mm ID pipe.
4.2.3. Unsupervised neural network

Since the supervised neural network has the subjectivity
of the researcher due to the selection of reference data for
training the neural network, to study the flow regimes iden-
tified by the unsupervised neural network is worth to do in



100 10 1 0.1 0.01
10

1

 1st Cluster          2nd Cluster         3rd Cluster
 4th Cluster          5th Cluster       
   Usui Criteria

Jf
 [

m
/s

]

Jg [m/s]

Fig. 22c. The flow regime identification results of Kohonen’s self-
organized neural network with five clusters for downward flow in
25.4 mm ID.

J.Y. Lee et al. / International Journal of Heat and Mass Transfer 51 (2008) 3442–3459 3457
both optimization of the network and the evaluation of the
flow regime criteria.

As shown in Fig. 22a, both the bubbly-to-slug transition
and the slug-to-annular transition are well identified by the
three clusters KSOM. And the four-cluster-KSOM makes
some differences as shown in Fig. 22b. The second clusters
and the third clusters penetrate the bubbly-to-slug and
slug-to-annular transition, respectively. By comparing with
the results of the supervised neural network, it is identified
as cap bubbly/stable slug regime and unstable slug/ churn
regime. The five clusters, Fig. 22c, finally, produce almost
same level of identification as the supervised method. The
bubbly flow regime of Usui is classified as two regimes
which are dispersed bubbly flow and cap bubbly flow
regime. Also, the churn flow and annular flow regime are
well identified.

In the 50.8 mm ID pipe downward flow, the present
method identifies the flow regimes successfully. However,
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Fig. 22a. The flow regime identification results of Kohonen’s self-
organized neural network with three clusters for downward flow in
25.4 mm ID pipe.
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Fig. 22b. The flow regime identification results of Kohonen’s self-
organized neural network with four clusters for downward flow in
25.4 mm ID.
as the number of the clusters increase, the detailed classifi-
cation was made in the bubbly flow regime and slug flow
regime. In the bubbly flow regime, the neural network clas-
sifies the discrete bubbly flow and cap bubbly flow. Also in
the slug flow, the stable slug and unstable slug were identi-
fied. As shown in Fig. 23a, in the three clusters KSOM,
both the bubbly-to-slug and slug-to-churn and annular
transition are in a good agreement with Usui’s criterion.
In this case, the distinguishing between the churn and
annular flow is not easy because the average film thickness
is thicker than the vertical annular case. Furthermore, the
existence of solitary wave in the down ward flow which
has the large amplitude and propagation speed than small
ripples in the upward flow makes difficulty in the classifica-
tion of the annular flow and churn flow. As increasing the
number of clustering node, Fig. 23b, the bubbly flow
regime divided into discrete bubble and cap bubble regime.
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Fig. 23a. The flow regime identification results of Kohonen’s self-
organized neural network with three clusters for downward flow in
50.8 mm ID.



Table 3
The sensitivity of number of cluster to the flow regime identification for the d

Three clusters

First Bubbly flow
Second Slug flow
Third Churn/annular flow
Fourth
Fifth

Table 4
The sensitivity of number of cluster to the flow regime identification for the d

Three clusters

First Bubbly flow
Second Slug flow
Third Churn/annular flow
Fourth
Fifth
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Fig. 23c. The flow regime identification results of Kohonen’s self-
organized neural network with five clusters for downward flow in
50.8 mm ID pipe.
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Fig. 23b. The flow regime identification results of Kohonen’s self-
organized neural network with four clusters for downward flow in
50.8 mm ID pipe.
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The five clusters KSOM makes little differences to the
result of supervised method as presented in Fig. 23c. In this
case, the incensement of output node is affected to the divi-
sion between stable slug flow and unstable slug flow
regime. It means that the transition between stable slug
and unstable slug is more dominant to the slug-to-churn
transition from a view of the topological Euclidean dis-
tance. The sensitivity of number of cluster to the flow iden-
tification is summarized in Tables 3 and 4, respectively.
5. Conclusions

A method of objective and instantaneous flow regime
identification was developed here to meet the needs in the
practical two-phase flow such as the rapid transition or
unstable state under the incident or weak gravity field.
On the behalf of the objective nature of the neural network
and their relaxed restriction in data handling, the present
method was actualized by the probability distribution func-
tional input of short sampling period, considerably instan-
taneous to the neural network.

The complexity in the network structure due to the
increased number of input nodes to accept the sorted data
was accommodated through sensitivity study for the opti-
mization of the network. The experimental data for both
co-current upward and downward two-phase flow from
the two-phase flow loop of 25.4 mm ID and 50.8 mm ID
at Purdue University were used to develop the flow regime
map using the present instantaneous and objective method.
It was found that the present method could identify flow
regime within the short period observation of 1 s, success-
fully, for both upward and downward flow. For the
upward two-phase flow, both supervised and unsupervised
methods agree with the transition criteria of Mishima and
Ishii. However, for the downward flow, the existing criteria
need to be modified due to the pipe diameter effect on the
flow regime.
ownward flow in the pipe of 25.4 mm ID

Four clusters Five clusters

Bubbly flow Bubbly flow
Cap bubbly/stable slug flow Cap bubbly flow
Unstable slug/churn flow Slug flow
Churn/annular flow Churn flow

Annular flow

ownward flow in the pipe of 50.8 mm ID

Four clusters Five clusters

Bubbly flow Bubbly flow
Cap bubbly flow Cap bubbly flow
Slug flow Stable slug flow
Churn/annular flow Unstable slug flow

Churn/annular flow
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